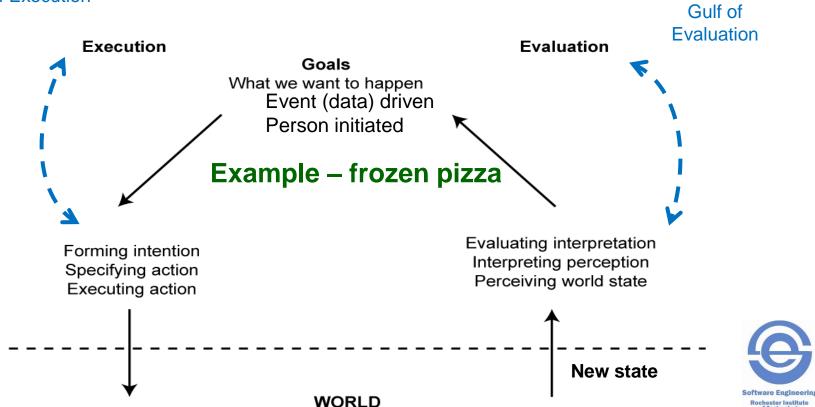
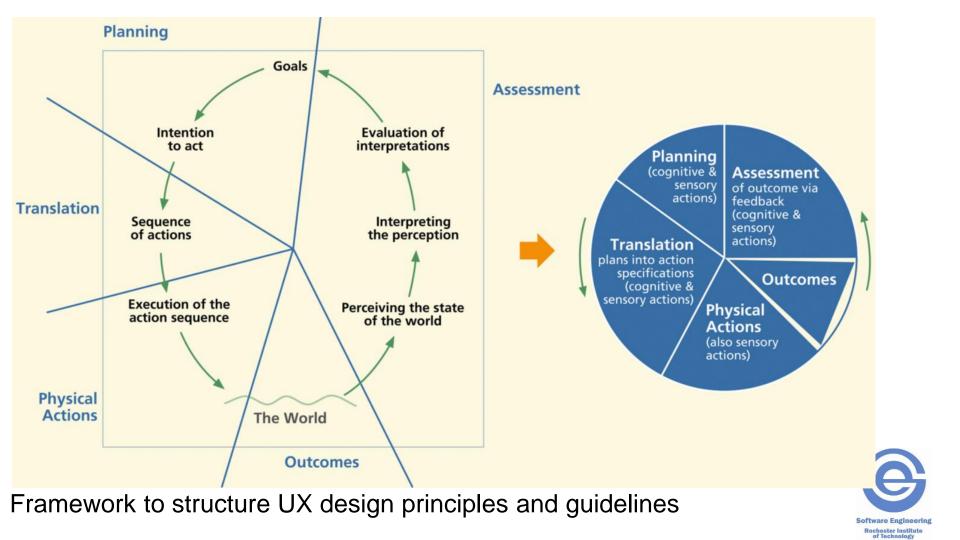

UX Design Principles and Guidelines

Achieve Usability Goals



Norman's Interaction Model Execution/Evaluation Action Cycle

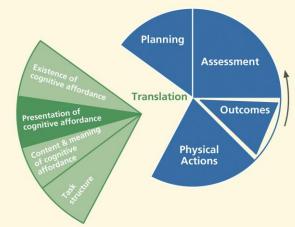


Execution/Evaluation Action Cycle: Stages of Action

Gulf of Execution

of Technology

Planning – Help Users Know What to Do


- Match user's conception (mental model) of high-level task organization
- What system features exist and how to use them
- Possibilities for what users can do at every point
- Help users plan most efficient ways to complete tasks
- Keep users aware of task progress
- Provide cognitive affordances to remind users to complete tasks

Translation: Help Users Know How To Do Something

- Effective cognitive affordances
 - Users know/learn what actions are needed to carry out intentions
 - Users successfully predict action outcomes
 - Users determine how to get started
- Cognitive affordances are visible legible text font size, color, background contrast
- Timely, before associated exploit
- Similar cognitive affordances have consistent appearance

Translation: Cognitive affordances are visible

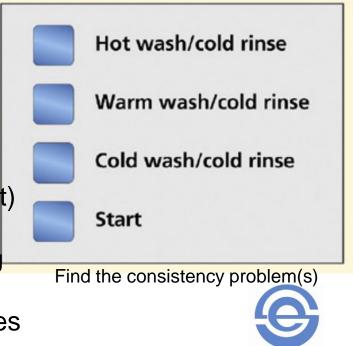
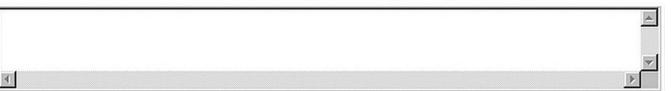

Figure 22-12: The sign is visible if you look carefully

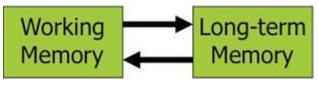
Figure 22-11: Aesthetic panel blocks visibility of sign as cognitive affordance

Translation: Content and Meaning of Cognitive Affordance


- Use precise wording and naming for clarity in labels, menu titles, menu choices, icons, data fields
 - E.g., complete labels by adding a noun
- Make choices distinguishable but consistent
 - Similar (different) names for similar (different) kinds of things
 - Avoid multiple synonyms for the same thing
 - Similar objects for similar kinds of functions
 - Consistent wording to express similar choices

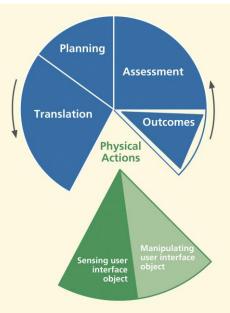
Translation: Content and Meaning of Cognitive Affordance

- Control complexity with object proximity and grouping
 - By related tasks and functions (more on this later)
- Recognition over recall
 - Recognition: remembering with the help of a visual clue
 - Recall: remembering with no help
 - Recognition is much easier


Enter the model number and description of the product you wish to purchase.

Translation: Design for Learnability, Memorability and Human Memory

- Don't assume because the interface tells the user something, they learn and remember it
- Working memory
 - Small 7 ± 2 chunks
 - <10 sec decay
 - Rehearsal can impact decay
- Long term memory
 - Infinite in size and duration
 - Extensive rehearsal transfers chunks
- Chunk is a unit of memory or perception
 - Hard: M W B C R A L O A B I M B F I
 - Easier: MWB CRA LOA BIM BFI
 - Easiest: BMW RCA AOL IBM FBI
- Stacking task interruptions, limited depth


Translation: Task Efficiency

- Provide alternative ways to perform tasks
- Provide shortcuts
- Provide keyboard alternatives to avoid physical "switching" actions
- Task thread continuity
 - Anticipate most likely next action, step, or task path
 - If you tell them what they should do, help them get there
- Do not make user redo any work, reenter data
- Retain user state information
 - Example, having to find folder you are working in, over and over
- Keep the user in control
 - Good interfaces are explorable, errors are forgiven

Physical Actions: Help Users Do Tasks

- Necessary physical affordances in user interface
- Sensing UI objects for and during manipulation
- Manipulating UI objects, making physical actions
- Avoid physical awkwardness and fatigue; e.g., shifting from mouse to keyboard constantly
- Accommodate disabilities
 - Range of motion, fine motor control, vision, or hearing
 - (More on this later)
- Fitts' law issues

Physical Actions: Design for Understandability

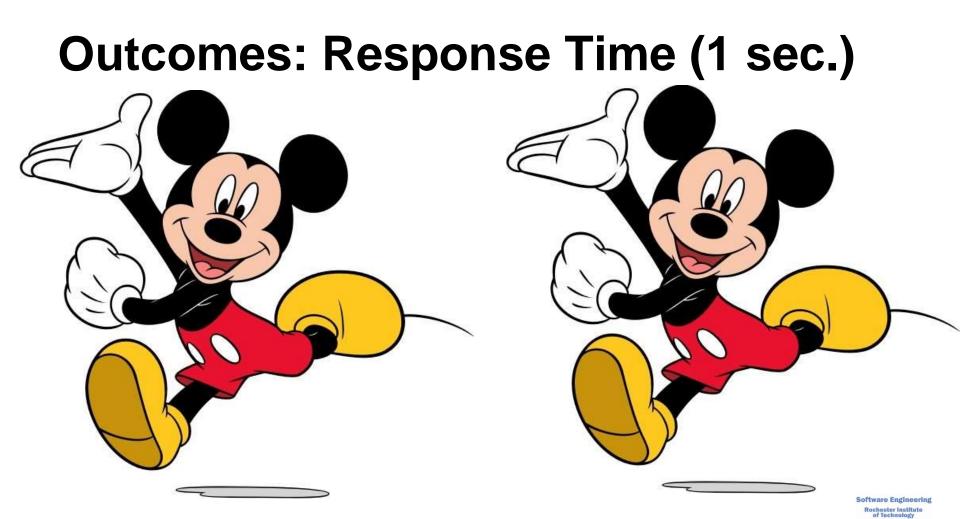
Human Errors

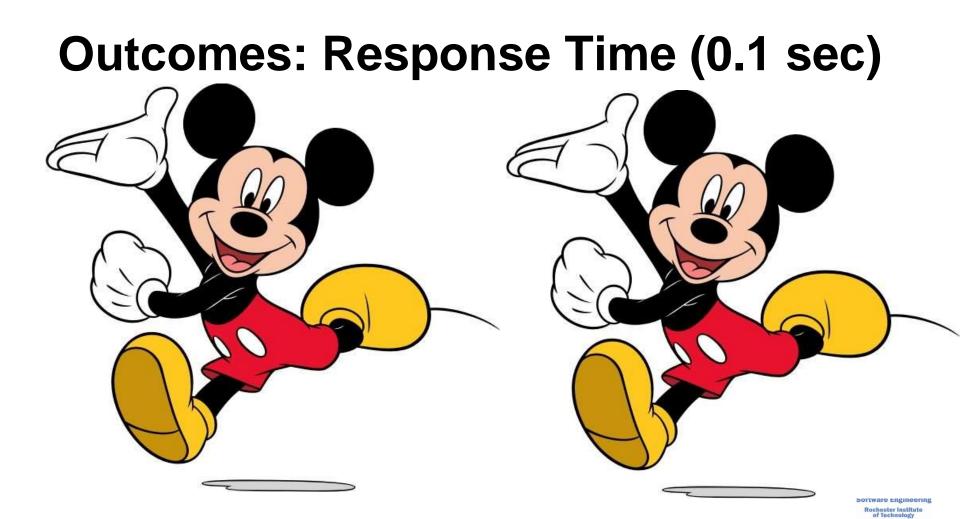

- Failure to execute a learned task Slips and Lapses
 - Slip: action not carried out as intended or planned
 - Lapse: missed actions and omissions due to short term memory failure -Interruptions, loss of intent
 - Typically found in skilled behavior
 - Most common human error due to inattention
- Use the wrong task Mistakes
 - A type of error caused by a faulty plan/intention
 - Typically found in rule-based or problemsolving behavior

- Error Prevention
 - Different things should look and act differently
 - Risky (consequential, hard to recover from errors) actions are separated from frequently used ones
 - Avoid lapses keep task steps short, include forcing functions that require a sequence of steps (trade off of user freedom)
 - Disable illegal commands

Outcomes

- Internal, invisible effect/result within system
- Outcomes must be revealed to user via system feedback
- Where usefulness lives
- Functional affordance of non-userinterface system functionality
- Issues are about computational errors, software bugs





Outcomes: Design for Efficiency - Performance

- Perceptual fusion two stimuli within perceptual cycle appear fused; $T_{\rm p} \sim 100$ msec
- Response times:
 - < 100 msec instantaneous
 - 0.1 1.0 sec user notices the delay
 - 1.5 sec display busy indicator
 - >1.5 sec display progress bar
- 2-Second-Rule: users should not have to wait longer than 2 seconds for common UI actions
- 3-Click-Rule users should not have to wait longer than three clicks to do something useful

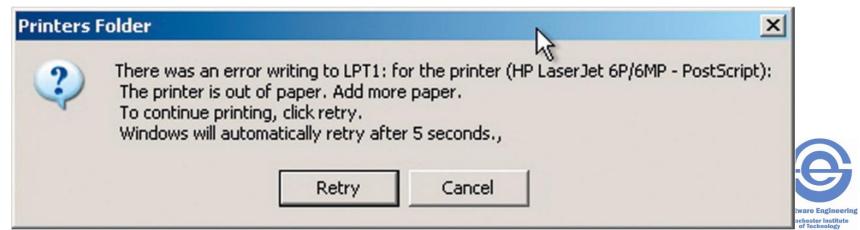
Outcomes: Automation

Assessment: Design helping user know if interaction was successful

- Provide some type of feedback for all user actions
 - Helps keep the user grounded in the interactive cycle
 - Understandable error messages when things don't work
 - Progress feedback on long operations
 - To prevent costly errors, solicit user confirmation before potentially destructive actions
 - Information on alternatives
 - But do not overuse and annoy
- Presentation of feedback
 - visible, noticeable location; augment with audio
- Content, meaning of feedback

Assessment

- Feedback wording
 - Helpful, informative
 - Positive psychological tone; it's the system's fault
 - Language of the user and domain context


Software Engineer Rochester Institute

Assessment

Mail Server Query

Results for hartson.cs.vt.edu

send: invalid spawn id (6) while executing "send "1\$pid\r"" (file "./genpid_query.pass" line 31)

Broad Guidelines:

- Simplicity
 - Given two otherwise equivalent designs, the simplest is best (Ochham's Razor)*
 - Effective and simple is a challenging design objective
 - 80/20 rule 20% of functionality gets used 80% of the time
- Consistency
 - Do similar things in different places the same way
 - Label similar things the same
 - A custom design style book can help

* "Entities should not be multiplied without necessity." William of Ockham, 14th century Franciscan friar

Broad Guidelines

Use of language

- Avoid poor attempts at humor
- Avoid use of anthropomorphism
- Avoid using first-person speech
- Avoid condescending help
 - Examples, Clippy and Bob
- Use positive psychological tone
- Avoid violent, negative, demeaning terms
- Avoid use of psychologically threatening terms, such as "illegal," "invalid," and "abort"
- Avoid use of term "hit"; instead use "press" or "click"

- More later on ...
 - Grouping
 - Color
 - Text
 - Accessibility
 - Web and small screen
 - Internationalization

Activity

Work on the detailed design of your project, make sure to follow the UX guidelines during the whole Execution/Evaluation Action Cycle :

- 1. Planning:
- 2. Translation:
- 3. Physical Actions
- 4. Outcomes
- 5. Assessment

